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The paper presents the development and investigation of an adaptive-smoothing
(AS) procedure in conjunction with the full multigrid–full approximation storage
method. The latter has been previously implemented by the authors [1] for the incom-
pressible Navier–Stokes equations in conjunction with the artificial-compressibility
method and forms the basis for investigating the current AS approach. The principle
of adaptive smoothing is to exploit the nonuniform convergence behavior of the nu-
merical solution during the iterations to reduce the size of the computational domain
and, subsequently, to reduce the total computing time. The implementation of the
AS approach is investigated in conjunction with three different adaptivity criteria for
two- and three-dimensional incompressible flows. Furthermore, a dynamic procedure
(henceforth labeleddynamic adaptivity) for defining variably the AS parameters dur-
ing the computation is also proposed and its performance is investigated in contrast
to AS with constant parameters (henceforth labeledstatic adaptivity). Both static
and dynamic adaptivity can provide similar acceleration, but the latter additionally
provides more stable numerical solutions and also requires less experimentation for
optimizing the performance of the method. Numerical experiments are presented for
attached and separated flows around airfoils as well as for three-dimensional flow in
a curved channel. For external flows the AS performs better when it is applied in all
grid levels of the multigrid method, while for internal flows the best performance is
achieved when AS is applied in the finest grid only. Overall, the results show that
substantial acceleration of multigrid computations can be achieved by using adaptive
smoothing. c© 2000 Academic Press
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1. INTRODUCTION

Multigrid (MG) and adaptive-grid approaches are among the most powerful numerical
methods for improving the efficiency of computational fluid dynamics (CFD) solvers. The
multigrid method was originally developed for solving elliptic PDEs (for details see [2–6])
and, at present, is broadly used for solving different types of equations, including the Navier–
Stokes equations (see, for example, [1, 7–13], and references therein, among others).

The use of theadaptivity approachhas a long history in the numerical solution of PDEs.
This general approach can be exploited in many different ways, including adaptive min-
imization of the computational domain, known as a “local-solution method” [14]; grid
adaptation (see, e.g., [15, 16]); and the sparse-grid approach (see, e.g., [17, 18]). The aim
of the aforementioned methods and techniques is to improve numerical efficiency in terms
of savings on memory and CPU.

In the present work, the adaptivity is exploited at the stage of the iterative solution of the
discretized problem, and this is done by performing adaptive smoothing (AS) within the
global multigrid algorithm. The idea of adaptivity in conjunction with multilevel techniques
was first exploited by Brandt [4, 19] and Bai and Brandt [15] for solving elliptic problems.
Performing some additional smoothings near the known singularity of the solution and/or
near the boundary, as well as excluding some subdomains from the relaxation sweeps,
were proposed by Brandt and his co-workers as possible strategies, among other ideas. The
adaptive minimization of the computational domain was also investigated by Drikakis and
Tsangaris [14] in conjunction with the compressible Euler/Navier–Stokes equations for
flows around airfoils. A pointwise adaptive-smoothing algorithm was also developed and
theoretically investigated by R¨ude [20, 21] in connection with multigrid solutions of linear
elliptic equations. His algorithm was based on the Southwell method [22] for hand–solving
systems of linear algebraic equations. The Southwell method is a variant of the Gauss–Seidel
method, exploiting adaptive ordering of unknowns, based on the range of residuals.

The adaptive smoothing developed in the present work can be viewed as a block version
of the Southwell method [22], applied to solving the nonlinear system of the Navier–Stokes
equations. By adaptive smoothing we mean that thesmoother(i.e., the single-grid flow solver
in our case) acts only on an adaptively formed subsetωs of the gridω. In fact, this is the subset
where the solution significantly changes and, therefore, the residuals have large values. The
choice of the adaptivity criterion is an open question and may be problem dependent. Three
adaptivity criteria are investigated in the present work in connection with the computation of
external and internal flows. Moreover, we consider adaptivity criteria with fixed (constant)
parameters (static adaptivity) as well as with dynamically defined parameters (dynamic
adaptivity). In the former case, information about the residuals at the current iteration
(or current time step) is used to reconstruct the subsetωs, whereas according to dynamic
adaptivity, information about the residuals at consecutive iterations is employed. Thus,
not only the current residuals but also the convergence history is exploited in the dynamic-
adaptive process. The authors are not aware of any previous work regarding the development
of adaptive smoothing in conjunction with the full multigrid–full approximation storage
(FMG–FAS) method and the artificial-compressibility formulation of the Navier–Stokes
equations and, thus, this is the motivation for the present study.

The main objectives and contributions of the present research are: (i) to present the de-
velopment and implementation of the adaptive-smoothing approach in conjunction with the
nonlinear FMG–FAS method and the artificial-compressibility formulation of the
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Navier–Stokes equations, (ii) to investigate various adaptivity criteria, (iii) to investigate
the effects ofstaticanddynamic adaptivityon multigrid acceleration, and (iv) to apply the
above in the simulation of two- and three-dimensional external and internal flows featur-
ing separation and secondary flow effects, respectively. The incompressible Navier–Stokes
equations are discretized by a third-order characteristics-based scheme in space and by the
explicit multistage Runge–Kutta method in time.

The remainder of the paper is organized as follows: Section 2 presents briefly the gov-
erning equations and characteristics-based method. The multigrid and adaptive-smoothing
approaches are described in Sections 3 and 4, respectively. In Section 5 results from the
investigation of the AS approach for attached and separated flows around an airfoil, as
well as for three-dimensional flow in a curved channel, are presented. Finally, in Section 6
conclusions from the present study are drawn.

2. GOVERNING EQUATIONS AND SINGLE-GRID SOLUTION METHOD

The governing equations are the three-dimensional Navier–Stokes equations written in
curvilinear coordinates(ξ, η, ζ ) and in matrix form as

(JU)t + (EI )ξ + (FI )η + (GI )ζ = (EV )ξ + (FV )η + (GV )ζ . (1)

The unknown solution vectorU is

U = (p/β, u, v, w)T ,

where p is the pressure,u, v, andw are the velocity components, andβ is the artificial
compressibility parameter. For steady flow problemst is a pseudo-time.

The inviscidEI , FI ,GI and the viscousEV , FV ,GV fluxes are written as

EI = J(Ẽ I ξx + F̃ I ξy + G̃I ξz),

FI = J(Ẽ I ηx + F̃ I ηy + G̃I ηz),

GI = J(Ẽ I ζx + F̃ I ζy + G̃I ζz),

EV = J(ẼVξx + F̃Vξy + G̃Vξz),

FV = J(ẼVηx + F̃Vηy + G̃Vηz),

GV = J(ẼVζx + F̃Vζy + G̃Vζz),

where the fluxes with “tildes” denote the corresponding Cartesian fluxes:

Ẽ I =


u

u2+ p
uv
uw

, F̃ I =


v
uv

v2+ p
vw

, G̃I =


w
uw
vw

w2+ p

,

ẼV =
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, F̃V =


0
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, G̃V =


0
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.
The termsσi j (i, j = x, y, z) are the viscous stresses andJ is the Jacobian of the
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transformation from Cartesian to generalized curvilinear coordinates:

J = xξ (yηzζ − yζ zη)+ xη(yζ zξ − yξzζ )+ xζ (yξzη − yηzξ ).

A characteristics-based method [23] is used for discretizing the inviscid terms. According
to this method, a Riemann problem in each flow direction is solved to define the primitive
variables (p, u, v, w) at the cell faces of a computational volume, as functions of their
values along the characteristics. The characteristic variables are calculated by a third-order
upwind scheme [23]. The viscous terms are discretized by central differences and the time
integration is obtained by an explicit fourth-order Runge–Kutta method with local time
stepping. The time step varies between the four Runge–Kutta stages, as a function of the
grid coordinates and flow velocities [1]. The above algorithm is henceforth labeled asingle-
grid method.

3. MULTIGRID ALGORITHM

To accelerate the convergence of the single-grid Navier–Stokes method, afull multigrid–
full approximation storagemethod has been developed [1] and forms here the basis of
the present investigation. The three-stage FMG–FAS algorithm is schematically shown in
Figs. 1 and 2, while the basic steps of the third stage are as follows:

Stage III—Multigrid Sweeps on Three Grids (V-Cycles)

repeat

1. performν1 presmoothings using the single-grid (SG) solver on the finest grid;
2. compute the finest grid defect, restrict it to the intermediate grid, and compute the

right-hand side on the intermediate grid;
3. performν1 presmoothings on the intermediate grid;
4. compute the intermediate grid defect, restrict it to the coarsest grid, and compute the

right-hand side on the coarsest grid;
5. performνcg iterations on the coarsest grid;
6. compute the correction on the coarsest grid, prolongate it to the intermediate grid, and

correct the solution on the intermediate grid;
7. performν2 postsmoothing iterations on the intermediate grid;
8. compute the correction on the intermediate grid, prolongate it to the finest grid, and

correct the solution on the finest grid;
9. performν2 postsmoothing iterations on the finest grid;

until the steady state solution on the finest grid is achieved.

FIG. 1. Schematic of the full multigrid (FMG) for three grids: I. single grid computation on the coarsest
grid; II. two-level multigrid computation on the intermediate grid; III. three-level multigrid computation on the
finest grid.
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FIG. 2. Schematic of the V-cycle (R and P indicate restriction and prolongation, respectively).

According to the FMG approach, computations are initially performed on the coarsest
grid to provide a good initial guess on the intermediate grid. The same procedure is repeated
on the intermediate grid to provide a good initial guess on the finest grid. Thus, the FMG
for three grids can be divided into three stages: two auxiliary stages, where the steady-state
coarsest and intermediate grid solutions are computed, and the main stage where multigrid
sweeps on three grids are performed. In the present multigrid implementation, the FMG is
combined with the FAS algorithm. The latter is used to account for the nonlinearity of the
problem. The FAS method was first proposed by Brandt (see [4] and discussion in [5, 6]),
and it is now widely used in multigrid solutions of nonlinear problems. The single-grid
algorithm, i.e., Runge–Kutta and characteristic-based methods, is used as a relaxation pro-
cedure. The restriction operator for the residuals is obtained by the volumes’ weighted
summation of the residuals over the fine-grid control volumes (CVs). Bilinear and trilinear
prolongation operators are employed for two- and three-dimensional cases, respectively.
A detailed description and performance investigations of the FMG–FAS algorithm can be
found in [1].

4. ADAPTIVE-SMOOTHING ALGORITHM

The objective of the adaptive smoothing algorithm is to increase the performance of the
multigrid solution and, consequently, to accelerate further the fluid flow computations. The
adaptive smoothing acts only on an adaptively formed subsetωs (active set) of the full
grid ω. The idea is to avoid having to make too many computations in those cells of the
computational domain where the solution converges very quickly, i.e., where the residuals
have small values. In this way, the number of operations per iteration is reduced, thus
resulting in acceleration of the computations.

The relaxation procedureS(U, ν, γ,ns) for performing adaptive smoothing is described
below. The notationν stands for any ofν1, νcg, or ν2. The parametersγ andns govern the
adaptivity;γ (defined later on) is used in the reconstruction of the active setωs = ωs(n)
(wheren is the current iteration on the corresponding grid in the current MG sweep) and
determines the number of CVs belonging to the active set at the current (i.e.,nth) relaxation.
The parameterns stands for the length of the adaptivity cycle, i.e., the number of iterations
for which AS is applied.

The development of an adaptive-smoothing algorithm requires the following two issues
to be considered: (i) choice of an appropriate algorithm (i.e., the adaptivity criterion) for
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reconstructingωs, based on the local convergence behavior of the iterative solver, and
(ii) optimization of theglobal exchangeof information between different subdomains to
avoidstagnation(constant residuals values) or divergence of the iterative solver. These two
issues are discussed below.

4.1. Adaptivity Criterion

Obviously, the subsetωs must contain those CVsP ∈ ω for which the residuals are
relatively large. One possibility is to put inωs only the CV in which the current residual
reaches its maximum value and repeat this procedure for every iteration. Such a pointwise
adaptive-smoothing algorithm has been proposed and realized for elliptic linear problems
by Rüde [20, 21]. In this case the solution update in every single point where the residual
reaches its maximum value would be followed by the reconstruction ofωs and this would
require extra operations, thus resulting in a significant increase of computing time. It is,
therefore, more efficient to work with larger subsetsωs, especially when complex flow
problems on fine grids are to be solved.

The identification oflarge residualscan be done either with respect to the convergence
criterion or with respect to the current norm of the residuals. These issues are discussed
below in conjunction with a number of adaptivity criteria. According to our computational
approach, a steady-state problem is solved by performing pseudo-time steps. Therefore,
the norm of the current residuals of the steady-state problem is equal to the norm of the
time derivative term and in our case this is the term‖JUt‖. Let us denote by res(P) the
value of the maximum component of the discrete analogue ofJUt on a CV P, and letε
be the required accuracy of the iterative solution of the steady-state problem (Eq. (1)). In
other words, the convergence criterion on the finest grid should be

‖res‖C(ω) < ε.

Aiming at constructing the subsetωs in a computationally inexpensive way, we “freeze”
the residuals for several time steps in those CVs where they have relatively small values.
Let us denote bỹres(P) the last computed residual on CVP to distinguish it from the
“true” residual res(P). To understand the difference between the above two residuals,
consider two neigboring cells,Q and P, whereQ belongs to theactive set, but not P.
At the next adaptive-smoothing step, the solution is updated only for the cellQ, and,
subsequently, the residual is also computed there. Because the residual corresponding to
the cellP would depend on the solution in cellQ, if the entire domain was solved, the “true”
residual inP has to be recomputed after the solution inQ has been updated. However, this
would be computationally expensive. Therefore, in the definition of the various adaptivity
criteria given below, we use the last computed residual inP, instead of the “true” one.
Bearing in mind the above notation, we can write the adaptivity criteria considered here for
reconstructingωs as

• absolute criterion:ωs = {P: |r̃es(P)| ≥ γ ε, P ∈ ω},
• relative C criterion:ωs = {P: |r̃es(P)| ≥ γ ‖r̃es‖C(ω), P ∈ ω},
• relative L2 criterion: ωs = {P: |r̃es(P)| ≥ γ ‖r̃es‖L2(ω)

, P ∈ ω},
whereγ ≥ 0. It is obvious that the subsetωs is identical to the full gridω for γ = 0. When
varyingγ , larger or smaller subsetsωs of ω can be constructed.
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During the computationsγ may be either constant (static adaptivity) or variable (dynamic
adaptivity), i.e.,γ = γ (n). The use of variableγ ensures numerical robustness and this is
explained below. The value ofγ determines the number of CVs involved in the active set
ωs. If the number of CVs reduces very quickly, the iterative solver may diverge. However,
if the number of CVs reduces very slowly, then the acceleration of the convergence may
not be significant. Therefore, the adaptive smoothing procedure needs to have some current
information about the convergence behavior of the solver to decide how fast the number of
CVs inωs should be reduced. In the case of variableγ we use the rule

γ =


γmax, q ≤ 1,

γmax+ q−1
qmax−1(γmin− γmax), 1< q < qmax,

γmin, q ≥ qmax,

whereγmin, γmax, andqmax≥ 1 are given parameters. The notations used here are

q = r̃esnmax

r̃es∗max

,

r̃esnmax= maxÄ{r̃es(P)},
(2)

with n, 1≤ n ≤ ν, being the current iteration on the corresponding grid in the current MG
sweep, and

r̃es∗max=
r̃esn−1

max, r̃esnmax< r̃esn−1
max,

min
i<n

{
r̃esimax

}
, r̃esnmax≥ r̃esn−1

max.

As can be seen from the above formulae, the dynamic adaptivity procedure is based on
monitoring the rate of convergenceq. The overall procedure as described above encom-
passes information both regarding the absolute value of the residuals as well as regarding
the rate of convergence of the iterative procedure. Through the use of the parameterγ

we pursue the implementation of adaptive smoothing in the regions with large residuals,
while throughq we account for the rate of convergence in order to dynamically adapt the
values ofγ to the convergence behavior of the iterative process. Certainly, the proposed
adaptivity procedure is one of the possible ways to establish numerically dependence of
adaptivity on the decrease of residuals. At present, since the idea of adaptive smoothing in
conjunction with a nonlinear multigrid and the Navier–Stokes equations is rather new, we
are mainly interested in examining whether the approach works in principle and leave its
further optimization to be an issue of future research.

The caseqmax= 1 corresponds to the change ofγ value fromγmax to γmin, as long as
the norm of the residual increases. In this case only two values ofγ are used. However,
for qmax> 1, we allowγ to also have some intermediate values. As a result,γ decreases
gradually if a moderate increase of the residuals occurs. Using a variableγ , divergence of the
solution or slow convergence rates can be prevented. In the above procedure the residuals
are computed during the Runge–Kutta iterations and, thus, no additional operations for
implementing the adaptive smoothing are required.

4.2. Global exchange

Global exchange is realized in two ways: (i) through the solution of the equations on
the entire coarsest grid and (ii) by performing a complete smoothing after every successive
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(ns− 1) adaptive smoothings. Complete smoothing means that the equations are solved
in all CVs of ω. The complete smoothing is required for computing the “true” residuals
res(P) in all CVs, as well as for propagating more accurate information between different
subregions. Because the “true” residuals res(P) are not computed in all CVs at every
iteration, the convergence is checked only when the corresponding smoothing is performed
in all CVs of the finest grid.

Using all the aforementioned definitions, we can describe the procedure schematically as

ωs = ω
compute res0max

for n = 1 to ν do
for all P ∈ ωs perform a smoothing with Runge–Kutta time stepping procedure
computẽresn

max

if (ωs 6≡ ω) then
is = i s + 1

else
if (resn

max < ε) exit
is = 0

end if
if (i s = ns − 1 or n = ν − 1) then
ωs = ω

else
reconstructωs

if (ωs = ∅) ωs = ω
end if

end do

whereis is the current adaptive smoothing iteration.

5. RESULTS

The performance of the adaptive-smoothing multigrid (AS–MG) algorithm was inves-
tigated (i) for attached and separated flows around the NACA 0012 airfoil corresponding
to angles of incidencea = 0◦ anda = 10◦, respectively, and Reynolds number Re= 1000
and (ii) for the flow in a three-dimensional curved channel at Re= 790.

A three-grid AS–MG algorithm was employed in all computations. The efficiency of all
algorithms employed here is measured inwork units. Onework unit is the computational
work required for one iteration on the finest grid with all grid points involved in the com-
putation, i.e., the work performed by the single-grid solver to complete one Runge–Kutta
time step (four Runge–Kutta iterations) on the finest gridω. In the results presented below,
the reported work units also account for the operations performed on the coarser grids.

Different variants of the adaptive-smoothing algorithm were implemented. We denote
by AS the variant in which the adaptive smoothing is applied in all three grids; AS1 stands
for the variant where adaptive smoothing is applied in the intermediate and finest grids,
and AS2 stands for the variant where adaptive smoothing is applied in the finest grid only.
For comparison purposes, computations were also carried out using the original FMG–
FAS method [1] (henceforth labeled MG). The following notations are also used in the
results tables:ν2 stands for the number of postsmoothings performed on the intermediate
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or finest grids andνcg stands for the number of relaxations performed on the coarse grid.
Following the conclusions of a previous investigation [1], we performed no presmoothings.
Furthermore, in some cases comparisons of the MG acceleration with the corresponding
mesh-sequencing (MS) solution are also presented. In the MS case, no multigrid or adaptive
smoothing is used, but simply the equations are first solved on the coarsest and intermediate
grids to provide a better initial guess, via interpolation, onto the finest grid.

5.1. Attached and Separated Flows around the NACA 0012 Airfoil

Both for the attached and separated flows corresponding toa = 0◦ and 10◦, respectively,
the employed finest grid has 288× 72 grid points and the convergence accuracy wasε =
10−5. This grid size was found to provide grid-independent solutions regarding the flowfield
results. An enlargement of the grid around the airfoil is shown in Fig. 3. Theu-velocity
contours for thea = 0◦ and 10◦ cases are shown in Figs. 4 and 5, respectively. In these
figures comparison of the results between MG and various AS–MG cases, using different
adaptivity criteria, shows that the solution is the same irrespective of the criterion employed.

5.1.1. MG performance without AS.Initially, computations were performed using the
MG algorithm without AS. The performance results for the attached (a = 0◦) and separated
(a = 10◦) flows are given in Tables I and II, respectively. As can be seen from these tables, the
efficiency of the multigrid (MG) against the mesh-sequencing (MS) method depends mainly

FIG. 3. View of the 288× 72 computational grid around the NACA 0012 airfoil.
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FIG. 4. Comparison of the results (u-velocity contours) between MG (top left) and AS–MG cases for the
attached flow (a = 0◦) around the NACA 0012 airfoil, using different adaptivity criteria: absolute (top right),
relativeC (bottom left), and relativeL2 criterion (bottom right).

FIG. 5. Comparison of the results (u-velocity contours) between MG (top left) and AS–MG cases for the
separated flow (a = 10◦) around the NACA 0012 airfoil, using different adaptivity criteria: absolute (top right),
relativeC (bottom left), and relativeL2 criterion (bottom right).
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TABLE I

Effects of the Coarse-Grid (νcg) and Post-Relaxation (ν2) Iterations on the MG

Sweeps and Work Units for the Airfoil Case ata = 0◦

Method νcg ν2 MG sweeps Work units Acceleration

MS 8284 1.00
MG 5 5 428 2807 2.95
MG 11 11 195 2805 2.95
MG 21 21 101 2766 2.99
MG 81 21 101 3143 2.64

on the relation betweenνcg andν2. It is also very interesting that the MG method provides
more significant acceleration as the flow becomes more complex (Table II;a = 10◦). The
distribution of residuals at the end of certain MG sweeps are shown in Figs. 6 and 7 for
a = 0◦ anda = 10◦, respectively. As can be seen, in both cases there is a strong nonuniform
behavior of the numerical convergence, resulting in large residuals in some regions and small
residuals in other regions. Moreover, both fora = 0◦ anda = 10◦ the residuals are relatively
small with respect to the maximum ones, in a significant part of the computational domain,
and therefore the adaptive smoothing is particularly suitable in this case.

5.1.2. AS–MG for the case a= 0◦ (attached flow). Results for this case using the AS–
MG algorithm are shown in Tables III, IV, and V for the absolute, relativeC, and relativeL2

criterion, respectively. We should also mention that in all numerical experiments discussed
below the MG parameters have been fixed asνcg = 81 andν2 = 21, instead of the optimum
values for these parameters being selected according to the best MG acceleration as reported
in Tables I and II. The rationale behind this is twofold: First, we are interested in examining
whether and how the AS–MG performance varies from one flow case to another. The latter
can only be done if the MG parameters are the same for all cases. Second, the effects of AS
on the MG method are independent of the values ofνcg andν2. Therefore, bearing in mind
the best acceleration the MG method can provide in contrast to the MS solution (Tables I
and II), we are trying to examine what acceleration the AS can provide in addition to the
MG acceleration.

As can be seen from Tables III and IV, the adaptive smoothing approach accelerates the
multigrid computations by a factor of three for a broad range ofγ values. It should be
pointed out that wherever in the tables theγmin andγmax are different, the case corresponds
to a variableγ (dynamic adaptivity). The relativeC criterion provides the best acceleration

TABLE II

Effects of the Coarse-Grid (νcg) and Post-Relaxation (ν2) Iterations on the MG

Sweeps and Work Units for the Airfoil Case ata = 10◦

Method νcg ν2 MG sweeps Work units Acceleration

MS 32767 1.00
MG 21 21 474 13045 2.51
MG 81 21 228 7119 4.60
MG 41 11 442 7210 4.54
MG 321 21 115 5306 6.18
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FIG. 6. Distribution of MG residuals at the end of certain MG sweeps (attached flow case wherea = 0◦).

in this case. In general, it is not known in advance what the optimal value ofγ is. The value
of γ = 1 works well in conjunction with both the absolute and relativeL2 criteria but not
for large values forns (see the second row in Table III as well as the second and third rows
in Table V), while it is not clear what the optimumγ value for the relativeC criterion is.
It is also seen from these tables that large values ofns (i.e., large length of the adaptivity
cycle) can lead to divergence of the numerical solution (see the sixth row in Table III as well
as the seventh and ninth rows in Table V). When the active set is small (i.e., large values for
γ are used) less computational effort per smoothing is spent. However, if the active set is
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FIG. 7. Distribution of MG residuals at the end of certain MG sweeps (separated flow case witha = 10◦).

too small, then the number of MG sweeps usually increases and, additionally, divergence
of the solution may also occur.

Comparing static and dynamic adaptivity, we find that the latter is more robust than the
former in computations with slow convergence rates. However, forqmax= 1 (see Eq. (2))
more operations are performed and the acceleration of computations due to AS essentially
decreases. That is why the case with a toleranceqmax= 1.1 has also been tested. As can
be seen from the tables, in this case the acceleration is almost the same, as for the case
with constantγ = γmax, but the case with variableγ is still more robust, especially for the
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TABLE III

Results for the NACA 0012 Flow Case ata = 0◦ Using the Absolute Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 101 3143 1.00
AS–MG 1 1 10 119 994 3.16
AS–MG 0.8 0.8 10 120 1072 2.93
AS–MG 0 1 1 10 101 1550 2.03
AS–MG 0 1 1.1 10 108 1002 3.14
AS–MG 1 1 20 no conv.
AS–MG 0 1 1 20 103 1509 2.08
AS–MG 0 1 1.1 20 124 991 3.17

Note.γmin, γmax, andqmax ≥ 1 are used according to Section 4.1 to define the dynamic-adaptive criterion. If
γmin = γmax then static-adaptivity is used.ns denotes the number of adaptive smoothing iterations. The last column
shows the acceleration factor of the MG method resulting from to the implementation of the adaptive-smoothing
approach.

TABLE IV

Results for the NACA 0012 Flow Case ata = 0◦ Using the RelativeC Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 101 3143 1.00
AS–MG 0.1 0.1 10 93 800 3.93
AS–MG 0.2 0.2 10 98 634 4.96
AS–MG 0 0.2 1 10 105 1315 2.39
AS–MG 0 0.2 1.1 10 99 697 4.51
AS–MG 0.4 0.4 10 no conv.
AS–MG 0 0.4 1. 10 116 1516 2.07
AS–MG 0 0.4 1.1 10 116 754 4.17
AS–MG 0 0.8 1. 10 141 2200 1.43
AS–MG 0 0.8 1.1 10 174 1173 2.68

TABLE V

Results for the NACA 0012 Flow Case ata = 0◦ Using the RelativeL2 Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 101 3143 1.00
AS–MG 1 1 5 99 1015 3.10
AS–MG 1 1 10 102 823 3.82
AS–MG 0.8 0.8 10 108 944 3.23
AS–MG 0 1 1 10 101 1355 2.32
AS–MG 0 1 1.1 10 110 984 3.19
AS–MG 1 1 20 no conv.
AS–MG 0 1 1 20 100 1282 2.45
AS–MG 0 1 1.1 20 no conv.

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.
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relativeC criterion, when it is not known in advance what value ofγ should be prescribed.
For the present combination of MG parameters (νcg = 81, ν2 = 21) the overall acceleration
achieved by the AS–MG against the MS solution, using the relativeC criterion with constant
γ , was about a factor of 13.09. The corresponding acceleration using variableγ is about a
factor of 11.91.

An essential characteristic of the AS–MG algorithm is the dynamic variation of the
number of CVs involved in the active set. Figure 8 shows the variation of the number of

FIG. 8. Variation of the number of CVs involved in the AS–MG computation on the finest grid using different
adaptivity criteria (attached flow case wherea = 0◦).
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FIG. 9. Distribution of AS–MG residuals at the end of certain MG sweeps (attached flow case wherea = 0◦;
absolute criterion,γ = 1).

CVs, on the finest grid only, during iterations, for the absolute (constantγ = 1), relative
C (constantγ = 0.2), and relativeL2 (constantγ = 1) criteria, respectively. The above
values ofγ correspond to the best acceleration obtained by using the three aforementioned
convergence criteria. The dots in these figures correspond to the number of CVs during
the postsmoothing iterations of each multigrid sweep. Thex-axis in Fig. 8 includes the
iterations performed on the complete grid (i.e., complete smoothings), as well as the iter-
ations performed on the active set only (i.e., adaptive smoothings). In Fig. 8 the number
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of CVs corresponding to a complete smoothing is represented by a horizontal line at the
value of 20,736 CVs. Although the absolute criterion gradually leads to a continuous re-
duction of the CVs involved in the computation, the acceleration is less than the corre-
sponding one obtained by the relativeC criterion as well as by the relativeL2 criterion.
This can be explained by the fact that for the cases plotted in Fig. 8 the absolute criterion
requires more MG sweeps than the other two criteria. Several numerical experiments per-
formed during the present study showed that, in general, the continuous reduction of the
active set does not necessarily imply greater acceleration. The best performance is achieved
through a balance of the size of the active set (i.e., the number of CVs) and the number of
MG sweeps.

In Fig. 9, the distribution of the residuals for the AS–MG is shown. Comparing Figs. 6
and 9, one can see that the adaptive smoothing provides almost the same distribution of
residuals, however, at a significantly reduced computational cost. One can notice that
in certain regions of the domain AS–MG produces larger residuals than MG, but these
are either very small regions in which the numerical errors die out very quickly or re-
gions with very small residual values which have very little effect on the overall con-
vergence.

5.1.3. AS–MG for the case a= 10◦ (separated flow). Results for the flow around the
NACA 0012 at ten degrees angle of incidence are presented in Tables VI, VII, and VIII for
the three convergence criteria, respectively. Fora = 10◦ a large recirculation region over
the airfoil occurs, which also extends downstream of the trailing edge in the wake (Fig. 10).
Theu-velocity contours for AS–MG and MG cases are shown in Fig. 5 and, similar to the
a = 0◦ case, the AS does not affect the flow results.

The residuals distributions at different MG sweeps are shown in Fig. 11 for computations
performed using the absolute criterion. Similar to the casea = 0◦, one can notice the
nonuniform convergence behavior according to which the residuals decrease faster in certain
regions of the flowfield than in the rest of the domain. The variation of the number of CVs
belonging to the active set of the finest grid is shown in Fig. 12 for the same values ofγ

TABLE VI

Results for the NACA 0012 Flow Case ata = 10◦ Using the Absolute Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 228 7119 1.00
AS–MG 1 1 5 203 2584 2.76
AS–MG 1 1 10 202 2161 3.29
AS–MG 0.8 0.8 10 195 2191 3.25
AS–MG 0. 1 1 10 201 3291 2.16
AS–MG 0. 1 1.1 10 201 2190 3.25
AS1–MG 1 1 10 209 2400 2.97
AS2–MG 1 1 10 202 2898 2.46
AS2–MG 1 1 20 no conv.
AS–MG 0. 1 1 20 205 3161 2.25
AS–MG 0. 1 1.1 20 209 2041 3.49

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.
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TABLE VII

Results for the NACA 0012 Flow Case ata = 10◦ Using the RelativeC Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 228 7119 1.00
AS–MG 0.2 0.2 5 352 2921 2.44
AS–MG 0.4 0.4 5 515 3946 1.80
AS–MG 0 0.4 1.1 5 476 3734 1.91
AS–MG 0.1 0.1 10 358 2867 2.48
AS–MG 0.2 0.2 10 316 1911 3.73
AS–MG 0 0.2 1 10 352 4308 1.65
AS–MG 0 0.2 1.1 10 369 2205 3.23
AS–MG 0.4 0.4 10 no conv.
AS–MG 0 0.4 1 10 568 6902 1.03
AS–MG 0 0.4 1.1 10 562 2981 2.39

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.

andns, as for the flow casea = 0◦. The plots in Fig. 12 correspond to the results shown
in the third, sixth, and third rows of Tables VI, VII, and VIII, respectively. The number
of iterations on the finest grid using the absolute, relativeC, and relativeL2 criteria can
be found if one multiplies the corresponding number of MG sweeps by the number of
postsmoothing iterations on the finest grid (for the present caseν2 = 21). According to the
above, 4242, 6636, and 6153 iterations on the finest grid are required using the absolute,
relativeC, and relativeL2 criteria, respectively. Although by using the absolute criterion
less iterations on the finest grid are performed and, additionally, the number of CVs on

TABLE VIII

Results for the NACA 0012 Flow Case ata = 10◦ Using the RelativeL2 Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 228 7119 1.00
AS–MG 1 1 5 333 3307 2.15
AS–MG 1 1 10 293 2219 3.21
AS–MG 0.8 0.8 10 263 2135 3.33
AS–MG 0.6 0.6 10 230 2224 3.20
AS–MG 0 1 1 10 338 4456 1.60
AS–MG 0 1 1.1 10 287 2282 3.12
AS1–MG 1 1 10 267 2945 2.42
AS2–MG 1 1 10 242 3518 2.02
AS2–MG 1 1 20 no conv.
AS2–MG 0 1 1 20 236 4505 1.58
AS2–MG 0 1 1.1 20 261 3660 1.95

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.
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FIG. 10. Streamlines around the NACA 0012 airfoil for the flow case Re= 1000,a = 10◦.

the finest grid rapidly decreases during the iterations, the overall work units required are
more than those needed by the relativeC criterion (see the corresponding lines in Tables VI
and VII). This is partly due to the fact that for about half of the iterations the number of
CVs using the absolute criterion is larger than the corresponding number when the relative
C criterion is employed. Moreover, when using the absolute criterion a larger number of
CVs on the intermediate and coarsest grids are usually involved (these CVs are not shown
in Fig. 12) compared to the cases of relativeC or relative L2 criterion. As a result of
the above, the overall work units required are finally less in the case of the relativeC
criterion.

As can be seen from Tables VI, VII, and VIII, the AS approach provides additional
acceleration on top of MG acceleration, by a factor of about three for a broad range of
γ values. Although greater acceleration is achieved for constantγ (see the sixth row in
Table VII), these results are very close to the best ones obtained using variableγ (see the
last row in Table VI and the eighth row in Table VII) and, additionaly, the variableγ has
been found, in general, to provide more stable solutions. The value ofγ = 1 works well in
conjunction with both the absolute and the relativeL2 criteria, but it is not clear what the
optimalγ value in the case of the relativeC criterion is.

Finally, by comparing the performance of AS, AS1, and AS2 (Tables VI and VIII) one
can see that, for this case at least, it is more efficient to perform adaptive smoothing in all
three grids. Additional numerical experiments (not presented here) verified this conclusion
for the attached flow case (a = 0◦), as well.

5.2. Three-Dimensional Flow in a Curved Channel

The final flow case is the three-dimensional flow in a 90◦ bend (Fig. 13) at Re= 790. The
finest grid has 95 nodes in the streamwise and 112× 56 points in the transverse plane (i.e., a
total of 595,840 grid points) Because of symmetry, computations could be carried out using
a half section of the channel in thez-direction. As inflow conditions, the corresponding fully



DYNAMICALLY ADAPTED MULTIGRID 585

FIG. 11. Distribution of AS–MG residuals at the end of certain MG sweeps (separated flow case witha = 10◦;
absolute criterion,γ = 1).

developed flow in a straight channel at Re= 790 was imposed at the inlet. The bend has a
large enough turning angle and a small enough mean radius to generate severe distortion
and significant secondary flow. The formation of the secondary flow atθ = 90◦ is shown
in Fig. 14.

Detailed comparisons between computations and experiment, as well as investigation of
the MG performance against the single-grid and mesh-sequencing solutions, can be found in
[1]. In the present work, the investigation focuses on the results obtained by AS–MG. Like
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FIG. 12. Variation of the number of CVs involved in the AS–MG computation on the finest grid using different
adaptivity criteria (separated flow case witha = 10◦).

the airfoil cases, the computations were performed usingνcg = 81 andν2 = 21. Results
from the numerical experiments using the absolute, relativeC, and relativeL2 criteria
are given in Tables IX, X, and XI, respectively. The results show that the acceleration
achieved by the adaptive smoothing is less, compared to the airfoil case, but still improves
the performance of the MG algorithm by a factor of 2 to 2.54, depending on the AS–
MG variant used. For this flow case, the performance results using different adaptivity
criteria show small differences. Concerning the variableγ , conclusions similar to the airfoil
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FIG. 13. Schematic of the 90◦ curved channel.

case can also be drawn here. The use of variableγ accelerates the solution by about
the same factor with the constantγ and, like the airfoil cases, also leads to more stable
solutions.

The most interesting conclusion for this particular flow is that the adaptive smoothing
is more efficient when it is implemented only in the finest grid (AS2 variant) and this
applies for all adaptivity criteria considered here. This numerical behavior is exactly the
opposite from the results obtained for the airfoil flow. A possible explanation for this
is as follows: Although both flows are incompressible, the flow around the airfoil has

FIG. 14. Formation of the secondary flow atθ = 90◦.
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TABLE IX

Results for the Curved Channel Case Using the Absolute Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 31 766 1.00
AS–MG 1 1 5 88 671 1.14
AS–MG 0 1 1.1 5 31 361 2.12
AS1–MG 1 1 5 39 359 2.13
AS2–MG 1 1 5 36 381 2.01
AS–MG 0 1 1.1 10 32 324 2.36
AS1–MG 1 1 10 69 436 1.76
AS1–MG 0 1 1.1 10 32 316 2.42
AS2–MG 1 1 10 34 306 2.50
AS2–MG 0 1 1. 10 30 349 2.19
AS2–MG 0 1 1.1 10 30 323 2.37

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.

large regions in which the solution does not significantly change during the computations.
However, the elliptic character of the flow is more dominant in the curved channel case
and, therefore, changes of the solution in subsets of the domain are much more likely to
influence the solution in the neighboring regions. This behavior is more severe on coarser
grids and, thus, the AS approach performs better when it is implemented only in the finest
grid.

TABLE X

Results for the Curved Channel Case Using RelativeC Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 31 766 1.00
AS–MG 0.1 0.1 5 48 464 1.65
AS–MG 0 0.1 1.1 5 39 433 1.77
AS1–MG 0.1 0.1 5 41 428 1.79
AS2–MG 0.1 0.1 5 32 355 2.16
AS2–MG 0 0.1 1.1 5 30 374 2.05
AS2–MG 0.2 0.2 5 84 684 1.12
AS2–MG 0 0.2 1.1 5 30 359 2.13
AS2–MG 0.1 0.1 10 41 361 2.12
AS2–MG 0 0.1 1 10 31 389 1.97
AS2–MG 0 0.1 1.1 10 32 358 2.14
AS2–MG 0 0.2 1.1 10 32 359 2.13
AS2–MG 0.05 0.05 20 38 397 1.93
AS2–MG 0.1 0.1 20 40 301 2.54
AS2–MG 0 0.1 1 20 30 359 2.13
AS2–MG 0 0.1 1.1 20 31 346 2.21

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.
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TABLE XI

Results for the Curved Channel Case Using the RelativeL2 Criterion

Method γmin γmax qmax ns MG sweeps Work units Acceleration

MG 31 766 1.00
AS–MG 1 1 5 52 633 1.21
AS–MG 0 1 1.1 5 43 516 1.48
AS1–MG 1 1 5 40 467 1.64
AS2–MG 1 1 5 30 362 2.12
AS–MG 0 1 1.1 10 44 505 1.52
AS1–MG 0 1 1.1 10 41 467 1.64
AS2–MG 1 1 10 33 336 2.28
AS2–MG 0 1 1.1 10 30 353 2.17
AS2–MG 1 1 20 35 318 2.41
AS2–MG 0 1 1.1 20 29 335 2.29

Note.The table includes results from the implementation of three variants of the approach: in all three grids
(AS), in the intermediate and finest grids (AS1), and in the finest grid only (AS2). See footnote of Table III for
additional information.

6. CONCLUSIONS

Implementation and investigation of an adaptive-smoothing approach in conjunction with
the FMG–FAS method was presented.

Three different adaptivity criteria were investigated both for attached and separated flows
around a NACA 0012 airfoil, as well as for three-dimensional flow in a curved channel.
Several numerical experiments were performed showing that additional acceleration of the
computations can be achieved by AS–MG. In addition to the use of constant adaptivity pa-
rameters, a dynamic procedure (dynamic- adaptivity) for defining variably these parameters
was also proposed. The main difference between the AS–MG variants based on static and
dynamic adaptivity is that the former makes use of information about the current residuals,
whereas the latter exploits information about the convergence history of the iterative process
and, therefore, leads to more stable numerical solutions.

Furthermore, the numerical experiments showed that for external airfoil flow the AS–MG
performs better if it is applied in all grid levels of the MG algorithm. In contrast, for internal
flow it was found that the AS–MG works more efficiently if it is applied only in the finest
grid. It was also found that AS–MG provides greater acceleration for the airfoil flow cases
than for channel flow. The absolute criterion was found to lead to a gradual reduction of the
CVs as the computation progresses, resulting in fast reduction of the active set toward the
end of the computation. In contrast, for the relativeC criterion the number of CVs fluctuates
during the iterations. However, irrespective of the particular numerical behavior resulting
from different adaptivity criteria, it was found that the overall acceleration is achieved
through a proper balance of the size of the active set (i.e., the number of CVs involved in
the computation) and total number of MG sweeps required for convergence.

The present work investigated the idea of adaptive smoothing for the solution of the in-
compressible Navier–Stokes equations in conjunction with the FMG–FAS and the artificial-
compressibility method. However, the same idea can also be exploited for compressible
flows as well as for other physical systems (e.g., in electromagnetism). The implementation
of adaptive-smoothing can also offer significant advantages in problems which require large
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computing resources (e.g., direct numerical simulation of turbulence) and research toward
this direction needs to be performed. Furthermore, the potential to accelerate even further
fluidflow computations can possibly be achieved if other approaches for determining the
dynamic-adaptivity parameters are developed. The latter as well as the extension of the
AS–MG to unsteady incompressible and compressible flows is part of our future research
agenda.
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