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The paper presents the development and investigation of an adaptive-smoothing
(AS) procedure in conjunction with the full multigrid—full approximation storage
method. The latter has been previously implemented by the authors [1] for the incom-
pressible Navier—Stokes equations in conjunction with the artificial-compressibility
method and forms the basis for investigating the current AS approach. The principle
of adaptive smoothing is to exploit the nonuniform convergence behavior of the nu-
merical solution during the iterations to reduce the size of the computational domain
and, subsequently, to reduce the total computing time. The implementation of the
AS approach is investigated in conjunction with three different adaptivity criteria for
two- and three-dimensional incompressible flows. Furthermore, a dynamic procedure
(henceforth labeledynamic adaptivityfor defining variably the AS parameters dur-
ing the computation is also proposed and its performance is investigated in contrast
to AS with constant parameters (henceforth labedtadic adaptivity. Both static
and dynamic adaptivity can provide similar acceleration, but the latter additionally
provides more stable numerical solutions and also requires less experimentation for
optimizing the performance of the method. Numerical experiments are presented for
attached and separated flows around airfoils as well as for three-dimensional flow in
a curved channel. For external flows the AS performs better when it is applied in all
grid levels of the multigrid method, while for internal flows the best performance is
achieved when AS is applied in the finest grid only. Overall, the results show that
substantial acceleration of multigrid computations can be achieved by using adaptive
smoothing. © 2000 Academic Press
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1. INTRODUCTION

Multigrid (MG) and adaptive-grid approaches are among the most powerful numeri
methods for improving the efficiency of computational fluid dynamics (CFD) solvers. Tt
multigrid method was originally developed for solving elliptic PDEs (for details see [2—6
and, at present, is broadly used for solving different types of equations, including the Nav
Stokes equations (see, for example, [1, 7-13], and references therein, among others).

The use of thedaptivity approacthas a long history in the numerical solution of PDEs.
This general approach can be exploited in many different ways, including adaptive
imization of the computational domain, known as a “local-solution method” [14]; gri
adaptation (see, e.g., [15, 16]); and the sparse-grid approach (see, e.g., [17, 18]). The
of the aforementioned methods and techniques is to improve numerical efficiency in te
of savings on memory and CPU.

In the present work, the adaptivity is exploited at the stage of the iterative solution of |
discretized problem, and this is done by performing adaptive smoothing (AS) within t
global multigrid algorithm. The idea of adaptivity in conjunction with multilevel technique
was first exploited by Brandt [4, 19] and Bai and Brandt [15] for solving elliptic problem:
Performing some additional smoothings near the known singularity of the solution and
near the boundary, as well as excluding some subdomains from the relaxation swe
were proposed by Brandt and his co-workers as possible strategies, among other ideas
adaptive minimization of the computational domain was also investigated by Drikakis ¢
Tsangaris [14] in conjunction with the compressible Euler/Navier—Stokes equations
flows around airfoils. A pointwise adaptive-smoothing algorithm was also developed &
theoretically investigated byuRle [20, 21] in connection with multigrid solutions of linear
elliptic equations. His algorithm was based on the Southwell method [22] for hand-solv
systems of linear algebraic equations. The Southwell method is a variant of the Gauss—S
method, exploiting adaptive ordering of unknowns, based on the range of residuals.

The adaptive smoothing developed in the present work can be viewed as a block ver
of the Southwell method [22], applied to solving the nonlinear system of the Navier—Stol
equations. By adaptive smoothing we mean thastheothe(i.e., the single-grid flow solver
in our case) acts only on an adaptively formed subpgef the gridw. In fact, thisis the subset
where the solution significantly changes and, therefore, the residuals have large values
choice of the adaptivity criterion is an open question and may be problem dependent. T
adaptivity criteria are investigated in the present work in connection with the computatior
external and internal flows. Moreover, we consider adaptivity criteria with fixed (consta
parametersstatic adaptivity as well as with dynamically defined parametetgnamic
adaptivity). In the former case, information about the residuals at the current iterati
(or current time step) is used to reconstruct the subgetvhereas according to dynamic
adaptivity, information about the residuals at consecutive iterations is employed. Th
not only the current residuals but also the convergence history is exploited in the dynar
adaptive process. The authors are not aware of any previous work regarding the develop
of adaptive smoothing in conjunction with the full multigrid—full approximation storag
(FMG-FAS) method and the artificial-compressibility formulation of the Navier—Stoke
equations and, thus, this is the motivation for the present study.

The main objectives and contributions of the present research are: (i) to present the
velopment and implementation of the adaptive-smoothing approach in conjunction with
nonlinear FMG-FAS method and the artificial-compressibility formulation of th
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Navier—Stokes equations, (ii) to investigate various adaptivity criteria, (iii) to investiga
the effects oktaticanddynamic adaptivitypn multigrid acceleration, and (iv) to apply the
above in the simulation of two- and three-dimensional external and internal flows feat
ing separation and secondary flow effects, respectively. The incompressible Navier—Stt
equations are discretized by a third-order characteristics-based scheme in space and |
explicit multistage Runge—Kutta method in time.

The remainder of the paper is organized as follows: Section 2 presents briefly the ¢
erning equations and characteristics-based method. The multigrid and adaptive-smoot
approaches are described in Sections 3 and 4, respectively. In Section 5 results fron
investigation of the AS approach for attached and separated flows around an airfoil
well as for three-dimensional flow in a curved channel, are presented. Finally, in Sectio
conclusions from the present study are drawn.

2. GOVERNING EQUATIONS AND SINGLE-GRID SOLUTION METHOD

The governing equations are the three-dimensional Navier—Stokes equations writte
curvilinear coordinate&, n, ¢) and in matrix form as

QU+ (EDe + (F))y + (G = (Ev)e + (Fv), + (Gv).. 1)

The unknown solution vectd is

U = (p/B.u,v,w)T,

where p is the pressurey, v, andw are the velocity components, adis the artificial
compressibility parameter. For steady flow probldnssa pseudo-time.
The inviscidE,, F,, G, and the viscoug&y, Fy, Gy fluxes are written as
Ei = JEi&+Fi& +Gi&),
Fi = J(Einx + Finy + Giny),
G = JE i+ Figy+ G,
Ev = J(Evé + Fvéy + Gvéy),
Fv = J(Evix + Fyny + Gyny),
Gv = J(Evix + Fugy + Gviy),

where the fluxes with “tildes” denote the corresponding Cartesian fluxes:

u v w
- 2 ~ uv ~ Uw
E,=|Y TP, F = G = ,
2 vw
uv v +p
uw vw w? + p
0 0 0
~ 0 ~ Oyx ~ Ozx
Ev=| | Fv=| "] Gy=
Oxy Oyy Ozy
Oxz Oyz Ozz

The termsoj; (i, ] = X, Yy, 2) are the viscous stresses addis the Jacobian of the
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transformation from Cartesian to generalized curvilinear coordinates:
J=Xe(VnZe = ¥eZy) + X (Yo Ze — YeZo) + X (Ve 2y — Yy Ze)-

A characteristics-based method [23] is used for discretizing the inviscid terms. Accord
to this method, a Riemann problem in each flow direction is solved to define the primit
variables ¢, u, v, w) at the cell faces of a computational volume, as functions of the
values along the characteristics. The characteristic variables are calculated by a third-c
upwind scheme [23]. The viscous terms are discretized by central differences and the
integration is obtained by an explicit fourth-order Runge—Kutta method with local tin
stepping. The time step varies between the four Runge—Kutta stages, as a function o
grid coordinates and flow velocities [1]. The above algorithm is henceforth labsladla-
grid method.

3. MULTIGRID ALGORITHM

To accelerate the convergence of the single-grid Navier—Stokes metiudidnaltigrid—
full approximation storagemethod has been developed [1] and forms here the basis
the present investigation. The three-stage FMG—FAS algorithm is schematically show
Figs. 1 and 2, while the basic steps of the third stage are as follows:

Stage Ill—Multigrid Sweeps on Three Grids (V-Cycles)
repeat

1. performv; presmoothings using the single-grid (SG) solver on the finest grid;

2. compute the finest grid defect, restrict it to the intermediate grid, and compute
right-hand side on the intermediate grid,;

3. performv; presmoothings on the intermediate grid;

4. compute the intermediate grid defect, restrict it to the coarsest grid, and compute
right-hand side on the coarsest grid,;

5. performygg iterations on the coarsest grid,;

6. compute the correction on the coarsest grid, prolongate it to the intermediate grid,
correct the solution on the intermediate grid;

7. performv, postsmoothing iterations on the intermediate grid;

8. compute the correction on the intermediate grid, prolongate it to the finest grid, ¢
correct the solution on the finest grid,;

9. performv, postsmoothing iterations on the finest grid;

until the steady state solution on the finest grid is achieved.

NAVAVYA

I stage 11 stage 11T stage

FIG. 1. Schematic of the full multigrid (FMG) for three grids: I. single grid computation on the coarse:
grid; II. two-level multigrid computation on the intermediate grid; Ill. three-level multigrid computation on th
finest grid.
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FIG. 2. Schematic of the V-cycle (R and P indicate restriction and prolongation, respectively).

According to the FMG approach, computations are initially performed on the coarsi
grid to provide a good initial guess on the intermediate grid. The same procedure is repe
on the intermediate grid to provide a good initial guess on the finest grid. Thus, the FN
for three grids can be divided into three stages: two auxiliary stages, where the steady-
coarsest and intermediate grid solutions are computed, and the main stage where mult
sweeps on three grids are performed. In the present multigrid implementation, the FM(
combined with the FAS algorithm. The latter is used to account for the nonlinearity of tl
problem. The FAS method was first proposed by Brandt (see [4] and discussion in [5, |
and it is now widely used in multigrid solutions of nonlinear problems. The single-gri
algorithm, i.e., Runge—Kutta and characteristic-based methods, is used as a relaxation
cedure. The restriction operator for the residuals is obtained by the volumes’ weigh
summation of the residuals over the fine-grid control volumes (CVs). Bilinear and triline
prolongation operators are employed for two- and three-dimensional cases, respecti
A detailed description and performance investigations of the FMG—FAS algorithm can
found in [1].

4. ADAPTIVE-SMOOTHING ALGORITHM

The objective of the adaptive smoothing algorithm is to increase the performance of
multigrid solution and, consequently, to accelerate further the fluid flow computations. T
adaptive smoothing acts only on an adaptively formed subséactive sex of the full
grid . The idea is to avoid having to make too many computations in those cells of t
computational domain where the solution converges very quickly, i.e., where the residt
have small values. In this way, the number of operations per iteration is reduced, tl
resulting in acceleration of the computations.

The relaxation procedur®U, v, y, ng) for performing adaptive smoothing is described
below. The notatiow stands for any of1, veg, OF v2. The parameterg andns govern the
adaptivity;y (defined later on) is used in the reconstruction of the activevset ws(n)
(wheren is the current iteration on the corresponding grid in the current MG sweep) a
determines the number of CVs belonging to the active set at the currenttti)gelaxation.
The parameteng stands for the length of the adaptivity cycle, i.e., the number of iteratior
for which AS is applied.

The development of an adaptive-smoothing algorithm requires the following two isst
to be considered: (i) choice of an appropriate algorithm (i.e., the adaptivity criterion) f
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reconstructingws, based on the local convergence behavior of the iterative solver, a
(ii) optimization of theglobal exchangef information between different subdomains to
avoidstagnation(constant residuals values) or divergence of the iterative solver. These t
issues are discussed below.

4.1. Adaptivity Criterion

Obviously, the subsebs must contain those CV® € w for which the residuals are
relatively large. One possibility is to put bs only the CV in which the current residual
reaches its maximum value and repeat this procedure for every iteration. Such a pointy
adaptive-smoothing algorithm has been proposed and realized for elliptic linear proble
by Ride [20, 21]. In this case the solution update in every single point where the resid
reaches its maximum value would be followed by the reconstructian ahd this would
require extra operations, thus resulting in a significant increase of computing time. It
therefore, more efficient to work with larger subsets especially when complex flow
problems on fine grids are to be solved.

The identification ofarge residualscan be done either with respect to the convergenc
criterion or with respect to the current norm of the residuals. These issues are discu
below in conjunction with a number of adaptivity criteria. According to our computation:
approach, a steady-state problem is solved by performing pseudo-time steps. There
the norm of the current residuals of the steady-state problem is equal to the norm of
time derivative term and in our case this is the tefdJ;||. Let us denote by r&®) the
value of the maximum component of the discrete analoguglgfon a CV P, and lete
be the required accuracy of the iterative solution of the steady-state problem (Eq. (1))
other words, the convergence criterion on the finest grid should be

Iresc) <é.

Aiming at constructing the subset in a computationally inexpensive way, we “freeze”
the residuals for several time steps in those CVs where they have relatively small vali
Let us denote byeq P) the last computed residual on CR to distinguish it from the
“true” residual reéP). To understand the difference between the above two residua
consider two neigboring cell€Q and P, where Q belongs to theactive setbut not P.

At the next adaptive-smoothing step, the solution is updated only for theQgedind,
subsequently, the residual is also computed there. Because the residual correspondi
the cellP would depend on the solution in c€), if the entire domain was solved, the “true”
residual inP has to be recomputed after the solutiorQrhas been updated. However, this
would be computationally expensive. Therefore, in the definition of the various adaptiv
criteria given below, we use the last computed residudP jrinstead of the “true” one.
Bearing in mind the above notation, we can write the adaptivity criteria considered here
reconstructingos as

e absolute criterionws = {P: [T P)| > ye, P € w},
e relative C criterion:ws = {P: [regP)| > y||Fe“51|C(w), P € w},
e relative L, criterion: ws = {P: |[régP)| > y||rAe“s4|,_2(w), P € w},

wherey > 0. Itis obvious that the subset is identical to the full grido for y = 0. When
varyingy, larger or smaller subsets; of w can be constructed.
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During the computationg may be either constant (static adaptivity) or variable (dynami
adaptivity), i.e.,y = y(n). The use of variablg: ensures numerical robustness and this i
explained below. The value ¢f determines the number of CVs involved in the active se
ws. If the number of CVs reduces very quickly, the iterative solver may diverge. Howeve
if the number of CVs reduces very slowly, then the acceleration of the convergence
not be significant. Therefore, the adaptive smoothing procedure needs to have some cu
information about the convergence behavior of the solver to decide how fast the numbe
CVs inws should be reduced. In the case of variaplee use the rule

Ymaxs q=<1,
Y = §Vmax+ qga;xill()/min — Ymax)s 1 <0 < Omax
Vmin, 4 = Omax

whereymin, Ymax @Nddmax > 1 are given parameters. The notations used here are
9=
resnax (2)
FEShax = MaXe {FESP)},

with n, 1 < n < v, being the current iteration on the corresponding grid in the current M
sweep, and

e e EShax < e
T\ min (6}, B, >

As can be seen from the above formulae, the dynamic adaptivity procedure is baset
monitoring the rate of convergence The overall procedure as described above encorr
passes information both regarding the absolute value of the residuals as well as regar
the rate of convergence of the iterative procedure. Through the use of the pargmet:
we pursue the implementation of adaptive smoothing in the regions with large residu
while throughg we account for the rate of convergence in order to dynamically adapt tl
values ofy to the convergence behavior of the iterative process. Certainly, the propos
adaptivity procedure is one of the possible ways to establish numerically dependenc
adaptivity on the decrease of residuals. At present, since the idea of adaptive smoothir
conjunction with a nonlinear multigrid and the Navier—Stokes equations is rather new,
are mainly interested in examining whether the approach works in principle and leave
further optimization to be an issue of future research.

The casagmax = 1 corresponds to the changejofvalue fromymax to ¥min, @s long as
the norm of the residual increases. In this case only two valugsaye used. However,
for gmax > 1, we allowy to also have some intermediate values. As a regullecreases
gradually ifamoderate increase of the residuals occurs. Using a vapiatileergence of the
solution or slow convergence rates can be prevented. In the above procedure the resi
are computed during the Runge—Kautta iterations and, thus, no additional operations
implementing the adaptive smoothing are required.

4.2. Global exchange

Global exchange is realized in two ways: (i) through the solution of the equations
the entire coarsest grid and (ii) by performing a complete smoothing after every succes
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(ns — 1) adaptive smoothings. Complete smoothing means that the equations are sc
in all CVs of w. The complete smoothing is required for computing the “true” residua
regP) in all CVs, as well as for propagating more accurate information between differe
subregions. Because the “true” residuals(Rdsare not computed in all CVs at every
iteration, the convergence is checked only when the corresponding smoothing is perfor
in all CVs of the finest grid.

Using all the aforementioned definitions, we can describe the procedure schematicall

ws = W
compute re,
forn=1tovdo
for all P € ws perform a smoothing with Runge—Kutta time stepping procedure

computaes) .,

if (ws # w) then
is=is+1

else
if (reg),.x < &) exit
is=0

end if

if is=ns—1orn=v—1)then
ws = @

else
reconstrucios
if (ws=0) ws=w

end if

end do

whereis is the current adaptive smoothing iteration.

5. RESULTS

The performance of the adaptive-smoothing multigrid (AS—-MG) algorithm was inve
tigated (i) for attached and separated flows around the NACA 0012 airfoil correspond
to angles of incidenca = 0° anda = 1@, respectively, and Reynolds number-R&000
and (i) for the flow in a three-dimensional curved channel a=R&0.

A three-grid AS—MG algorithm was employed in all computations. The efficiency of
algorithms employed here is measuredviork units Onework unitis the computational
work required for one iteration on the finest grid with all grid points involved in the con
putation, i.e., the work performed by the single-grid solver to complete one Runge—KL
time step (four Runge—Kautta iterations) on the finest gridh the results presented below,
the reported work units also account for the operations performed on the coarser grids

Different variants of the adaptive-smoothing algorithm were implemented. We den
by AS the variant in which the adaptive smoothing is applied in all three grids steids
for the variant where adaptive smoothing is applied in the intermediate and finest gri
and AS stands for the variant where adaptive smoothing is applied in the finest grid or
For comparison purposes, computations were also carried out using the original FM
FAS method [1] (henceforth labeled MG). The following notations are also used in t
results tablesv, stands for the number of postsmoothings performed on the intermedi
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or finest grids and¢y stands for the number of relaxations performed on the coarse gri
Following the conclusions of a previous investigation [1], we performed no presmoothin
Furthermore, in some cases comparisons of the MG acceleration with the correspon
mesh-sequencing (MS) solution are also presented. In the MS case, no multigrid or adaj
smoothing is used, but simply the equations are first solved on the coarsest and interme
grids to provide a better initial guess, via interpolation, onto the finest grid.

5.1. Attached and Separated Flows around the NACA 0012 Airfoil

Both for the attached and separated flows correspondiagt@®° and 10, respectively,
the employed finest grid has 28872 grid points and the convergence accuracy was
10-5. This grid size was found to provide grid-independent solutions regarding the flowfie
results. An enlargement of the grid around the airfoil is shown in Fig. 3.uFelocity
contours for thea = 0° and 10 cases are shown in Figs. 4 and 5, respectively. In thes
figures comparison of the results between MG and various AS—MG cases, using diffel
adaptivity criteria, shows that the solution is the same irrespective of the criterion employ

5.1.1. MG performance without ASlnitially, computations were performed using the
MG algorithm without AS. The performance results for the attached (°) and separated
(a = 10°) flows are givenin Tables | and II, respectively. As can be seen fromthese tables,
efficiency of the multigrid (MG) against the mesh-sequencing (MS) method depends mai

FIG. 3. View of the 288x 72 computational grid around the NACA 0012 airfoil.
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FIG. 4. Comparison of the resultsi{velocity contours) between MG (top left) and AS-MG cases for the
attached flow 4 = 0°) around the NACA 0012 airfoil, using different adaptivity criteria: absolute (top right),
relativeC (bottom left), and relativé , criterion (bottom right).

FIG. 5. Comparison of the resultsi{velocity contours) between MG (top left) and AS-MG cases for the
separated flowg = 10°) around the NACA 0012 airfoil, using different adaptivity criteria: absolute (top right),
relativeC (bottom left), and relativé , criterion (bottom right).
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TABLE |
Effects of the Coarse-Grid /¢5) and Post-Relaxation ¢,) Iterations on the MG
Sweeps and Work Units for the Airfoil Case ata = 0°

Method Veg Vo MG sweeps Work units Acceleration
MS 8284 1.00
MG 5 5 428 2807 2.95
MG 11 11 195 2805 2.95
MG 21 21 101 2766 2.99
MG 81 21 101 3143 2.64

on the relation betweeny andv.. It is also very interesting that the MG method provides
more significant acceleration as the flow becomes more complex (Table=It0°). The
distribution of residuals at the end of certain MG sweeps are shown in Figs. 6 and 7
a = 0° anda = 10°, respectively. As can be seen, in both cases there is a strong nonunifc
behavior of the numerical convergence, resulting in large residuals in some regionsand s
residuals in other regions. Moreover, bothdoe 0° anda = 10° the residuals are relatively
small with respect to the maximum ones, in a significant part of the computational dome
and therefore the adaptive smoothing is particularly suitable in this case.

5.1.2. AS—-MG for the case-a 0° (attached flow). Results for this case using the AS—
MG algorithm are shown in Tables lll, IV, and V for the absolute, relafiyand relative.,
criterion, respectively. We should also mention that in all numerical experiments discus
below the MG parameters have been fixedgs= 81 andv, = 21, instead of the optimum
values for these parameters being selected according to the best MG acceleration as rey
in Tables I and II. The rationale behind this is twofold: First, we are interested in examini
whether and how the AS—MG performance varies from one flow case to another. The Ie
can only be done if the MG parameters are the same for all cases. Second, the effects ¢
on the MG method are independent of the values.glndv,. Therefore, bearing in mind
the best acceleration the MG method can provide in contrast to the MS solution (Tabl
and I1), we are trying to examine what acceleration the AS can provide in addition to t
MG acceleration.

As can be seen from Tables Il and 1V, the adaptive smoothing approach accelerates
multigrid computations by a factor of three for a broad range afalues. It should be
pointed out that wherever in the tables th@, andymax are different, the case corresponds
to a variabley (dynamic adaptivity). The relativ@ criterion provides the best acceleration

TABLE Il
Effects of the Coarse-Grid /¢g) and Post-Relaxation {,) Iterations on the MG
Sweeps and Work Units for the Airfoil Case ata = 10°

Method Veg Vo MG sweeps Work units Acceleration
MS 32767 1.00
MG 21 21 474 13045 251
MG 81 21 228 7119 4.60
MG 41 11 442 7210 4.54

MG 321 21 115 5306 6.18
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10th MG sweep 30th MG sweep

x107* x10™

054

-5

-5

90th MG sweep 101st MG sweep

FIG. 6. Distribution of MG residuals at the end of certain MG sweeps (attached flow case avhete).

in this case. In general, it is not known in advance what the optimal valuésofThe value

of y = 1 works well in conjunction with both the absolute and relatiecriteria but not
for large values fong (see the second row in Table Ill as well as the second and third row
in Table V), while it is not clear what the optimumvalue for the relativeC criterion is.

It is also seen from these tables that large valuess @f.e., large length of the adaptivity
cycle) can lead to divergence of the numerical solution (see the sixth row in Table Il as w
as the seventh and ninth rows in Table V). When the active set is small (i.e., large value:
y are used) less computational effort per smoothing is spent. However, if the active s¢
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30th MG sweep 70th MG sweep

110th MG sweep 150th MG sweep

190th MG sweep 228th MG sweep

-5

-5

FIG. 7. Distribution of MG residuals at the end of certain MG sweeps (separated flow case witt0’).

too small, then the number of MG sweeps usually increases and, additionally, diverge
of the solution may also occur.

Comparing static and dynamic adaptivity, we find that the latter is more robust than-
former in computations with slow convergence rates. Howevegfar= 1 (see Eqg. (2))
more operations are performed and the acceleration of computations due to AS essen
decreases. That is why the case with a tolerapgg = 1.1 has also been tested. As can
be seen from the tables, in this case the acceleration is almost the same, as for the
with constanty = ymax but the case with variable is still more robust, especially for the
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TABLE IlI
Results for the NACA 0012 Flow Case aa = 0° Using the Absolute Criterion

Method Yimin Yimax Omax ng MG sweeps Work units Acceleration
MG 101 3143 1.00
AS-MG 1 1 10 119 994 3.16
AS-MG 0.8 0.8 10 120 1072 2.93
AS-MG 0 1 1 10 101 1550 2.03
AS-MG 0 1 1.1 10 108 1002 3.14
AS-MG 1 1 20 no conv.

AS-MG 0 1 1 20 103 1509 2.08
AS-MG 0 1 1.1 20 124 991 3.17

NoOte. Ymin» ¥max @Nd0max > 1 are used according to Section 4.1 to define the dynamic-adaptive criterion.
Ymin = Ymax then static-adaptivity is used, denotes the number of adaptive smoothing iterations. The last colum
shows the acceleration factor of the MG method resulting from to the implementation of the adaptive-smoott
approach.

TABLE IV
Results for the NACA 0012 Flow Case ak = 0° Using the RelativeC Criterion

Method Yimin Vimax Omax Ns MG sweeps Work units Acceleration
MG 101 3143 1.00
AS-MG 0.1 0.1 10 93 800 3.93
AS-MG 0.2 0.2 10 98 634 4.96
AS-MG 0 0.2 1 10 105 1315 2.39
AS-MG 0 0.2 1.1 10 99 697 4.51
AS-MG 0.4 0.4 10 no conv.
AS-MG 0 0.4 1. 10 116 1516 2.07
AS-MG 0 0.4 1.1 10 116 754 4.17
AS-MG 0 0.8 1. 10 141 2200 1.43
AS-MG 0 0.8 1.1 10 174 1173 2.68
TABLE V

Results for the NACA 0012 Flow Case ah = 0° Using the RelativeL , Criterion

Method Yimin Vimax Omax Ng MG sweeps Work units Acceleration
MG 101 3143 1.00
AS-MG 1 1 5 99 1015 3.10
AS-MG 1 1 10 102 823 3.82
AS-MG 0.8 0.8 10 108 944 3.23
AS-MG 0 1 1 10 101 1355 2.32
AS-MG 0 1 1.1 10 110 984 3.19
AS-MG 1 1 20 no conv.

AS-MG 0 1 20 100 1282 2.45
AS-MG 0 1 1.1 20 no conv.

Note.The table includes results from the implementation of three variants of the approach: in all three g
(AS), in the intermediate and finest grids (ASand in the finest grid only (A$. See footnote of Table Ill for
additional information.



580 DRIKAKIS, ILIEV, AND VASSILEVA

relativeC criterion, when it is not known in advance what value/aghould be prescribed.
For the present combination of MG parametetg & 81, v, = 21) the overall acceleration
achieved by the AS—-MG against the MS solution, using the rel&tiséterion with constant
y, was about a factor of 13.09. The corresponding acceleration using varigbbout a
factor of 11.91.

An essential characteristic of the AS—-MG algorithm is the dynamic variation of tt
number of CVs involved in the active set. Figure 8 shows the variation of the number

absolute criterion
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FIG. 8. Variation of the number of CVs involved in the AS—-MG computation on the finest grid using differer
adaptivity criteria (attached flow case where- 0°).
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FIG. 9. Distribution of AS-MG residuals at the end of certain MG sweeps (attached flow caseavhede
absolute criteriony = 1).

CVs, on the finest grid only, during iterations, for the absolute (constaatl), relative

C (constanty = 0.2), and relativeL, (constanty = 1) criteria, respectively. The above
values ofy correspond to the best acceleration obtained by using the three aforementic
convergence criteria. The dots in these figures correspond to the number of CVs du
the postsmoothing iterations of each multigrid sweep. Xtaxis in Fig. 8 includes the
iterations performed on the complete grid (i.e., complete smoothings), as well as the |
ations performed on the active set only (i.e., adaptive smoothings). In Fig. 8 the num
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of CVs corresponding to a complete smoothing is represented by a horizontal line at
value of 20,736 CVs. Although the absolute criterion gradually leads to a continuous
duction of the CVs involved in the computation, the acceleration is less than the cor
sponding one obtained by the relati@ecriterion as well as by the relative, criterion.
This can be explained by the fact that for the cases plotted in Fig. 8 the absolute critel
requires more MG sweeps than the other two criteria. Several numerical experiments
formed during the present study showed that, in general, the continuous reduction of
active set does not necessarily imply greater acceleration. The best performance is achi
through a balance of the size of the active set (i.e., the number of CVs) and the numbe
MG sweeps.

In Fig. 9, the distribution of the residuals for the AS—-MG is shown. Comparing Figs.
and 9, one can see that the adaptive smoothing provides almost the same distributic
residuals, however, at a significantly reduced computational cost. One can notice
in certain regions of the domain AS—MG produces larger residuals than MG, but the
are either very small regions in which the numerical errors die out very quickly or r
gions with very small residual values which have very little effect on the overall col
vergence.

5.1.3. AS-MG for the case=a 10° (separated flow). Results for the flow around the
NACA 0012 at ten degrees angle of incidence are presented in Tables VI, VII, and VIII {
the three convergence criteria, respectively. &ef 10° a large recirculation region over
the airfoil occurs, which also extends downstream of the trailing edge in the wake (Fig. 1
Theu-velocity contours for AS—MG and MG cases are shown in Fig. 5 and, similar to tt
a = 0° case, the AS does not affect the flow results.

The residuals distributions at different MG sweeps are shown in Fig. 11 for computatic
performed using the absolute criterion. Similar to the case 0°, one can notice the
nonuniform convergence behavior according to which the residuals decrease faster in ce
regions of the flowfield than in the rest of the domain. The variation of the number of C'
belonging to the active set of the finest grid is shown in Fig. 12 for the same valyges o

TABLE VI
Results for the NACA 0012 Flow Case aa = 10° Using the Absolute Criterion

Method Yimin Vimax Omax Ns MG sweeps Work units Acceleration
MG 228 7119 1.00
AS-MG 1 1 5 203 2584 2.76
AS-MG 1 1 10 202 2161 3.29
AS-MG 0.8 0.8 10 195 2191 3.25
AS-MG 0. 1 1 10 201 3291 2.16
AS-MG 0. 1 1.1 10 201 2190 3.25
AS;—-MG 1 1 10 209 2400 2.97
AS,-MG 1 1 10 202 2898 2.46
AS,—MG 1 1 20 no conv.

AS-MG 0. 1 1 20 205 3161 2.25
AS-MG 0. 1 1.1 20 209 2041 3.49

Note.The table includes results from the implementation of three variants of the approach: in all three gr
(AS), in the intermediate and finest grids (ASand in the finest grid only (AS. See footnote of Table Il for
additional information.
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TABLE VII
Results for the NACA 0012 Flow Case ah = 10° Using the RelativeC Criterion

Method Yimin Vimax Omax Ng MG sweeps Work units Acceleration
MG 228 7119 1.00
AS-MG 0.2 0.2 5 352 2921 2.44
AS-MG 0.4 0.4 5 515 3946 1.80
AS-MG 0 0.4 1.1 5 476 3734 1.91
AS-MG 0.1 0.1 10 358 2867 2.48
AS-MG 0.2 0.2 10 316 1911 3.73
AS-MG 0 0.2 1 10 352 4308 1.65
AS-MG 0 0.2 1.1 10 369 2205 3.23
AS-MG 0.4 0.4 10 no conv.

AS-MG 0 0.4 1 10 568 6902 1.03
AS-MG 0 0.4 1.1 10 562 2981 2.39

Note.The table includes results from the implementation of three variants of the approach: in all three g
(AS), in the intermediate and finest grids (ASand in the finest grid only (A3. See footnote of Table Il for
additional information.

andng, as for the flow casa = 0°. The plots in Fig. 12 correspond to the results showt
in the third, sixth, and third rows of Tables VI, VII, and VIII, respectively. The numbe
of iterations on the finest grid using the absolute, relafiveand relativel , criteria can

be found if one multiplies the corresponding number of MG sweeps by the number
postsmoothing iterations on the finest grid (for the presentgase21). According to the

above, 4242, 6636, and 6153 iterations on the finest grid are required using the absc
relative C, and relativel, criteria, respectively. Although by using the absolute criterior
less iterations on the finest grid are performed and, additionally, the number of CVs

TABLE VI
Results for the NACA 0012 Flow Case aa = 10° Using the Relativel, Criterion

Method Vimin Yimax Omax ng MG sweeps Work units Acceleration
MG 228 7119 1.00
AS-MG 1 1 5 333 3307 2.15
AS-MG 1 1 10 293 2219 3.21
AS-MG 0.8 0.8 10 263 2135 3.33
AS-MG 0.6 0.6 10 230 2224 3.20
AS-MG 0 1 1 10 338 4456 1.60
AS-MG 0 1 1.1 10 287 2282 3.12
AS,—MG 1 1 10 267 2945 2.42
AS,-MG 1 1 10 242 3518 2.02
AS,—MG 1 1 20 no conv.

AS,—MG 0 1 1 20 236 4505 1.58
AS,-MG 0 1 1.1 20 261 3660 1.95

Note.The table includes results from the implementation of three variants of the approach: in all three gt
(AS), in the intermediate and finest grids (ASand in the finest grid only (A3. See footnote of Table Il for
additional information.
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FIG. 10. Streamlines around the NACA 0012 airfoil for the flow case=RE)00,a = 10°.

the finest grid rapidly decreases during the iterations, the overall work units required
more than those needed by the rela@veriterion (see the corresponding lines in Tables VI
and VII). This is partly due to the fact that for about half of the iterations the number |
CVs using the absolute criterion is larger than the corresponding number when the rels
C criterion is employed. Moreover, when using the absolute criterion a larger number
CVs on the intermediate and coarsest grids are usually involved (these CVs are not sh
in Fig. 12) compared to the cases of relat@®eor relative L, criterion. As a result of
the above, the overall work units required are finally less in the case of the reGative
criterion.

As can be seen from Tables VI, VII, and VIII, the AS approach provides addition:
acceleration on top of MG acceleration, by a factor of about three for a broad range
y values. Although greater acceleration is achieved for constgsee the sixth row in
Table VII), these results are very close to the best ones obtained using varigdae the
last row in Table VI and the eighth row in Table VII) and, additionaly, the varigbleas
been found, in general, to provide more stable solutions. The value-ol works well in
conjunction with both the absolute and the relativiecriteria, but it is not clear what the
optimaly value in the case of the relatig criterion is.

Finally, by comparing the performance of AS, A&nd AS (Tables VI and VIII) one
can see that, for this case at least, it is more efficient to perform adaptive smoothing ir
three grids. Additional numerical experiments (not presented here) verified this conclus
for the attached flow casa & 0°), as well.

5.2. Three-Dimensional Flow in a Curved Channel

The final flow case is the three-dimensional flow in aBénd (Fig. 13) at Re- 790. The
finest grid has 95 nodes in the streamwise andx BB points in the transverse plane (i.e., a
total of 595,840 grid points) Because of symmetry, computations could be carried out us
a half section of the channel in tkedirection. As inflow conditions, the corresponding fully
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FIG.11. Distribution of AS-MG residuals at the end of certain MG sweeps (separated flow casewith;
absolute criteriony = 1).

developed flow in a straight channel at R&90 was imposed at the inlet. The bend has :
large enough turning angle and a small enough mean radius to generate severe distc
and significant secondary flow. The formation of the secondary flagiv=a190° is shown
in Fig. 14.

Detailed comparisons between computations and experiment, as well as investigatic
the MG performance against the single-grid and mesh-sequencing solutions, can be fou
[1]. In the present work, the investigation focuses on the results obtained by AS—-MG. L
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FIG.12. Variation of the number of CVsinvolved in the AS—-MG computation on the finest grid using differer
adaptivity criteria (separated flow case with= 10°).

the airfoil cases, the computations were performed usigg= 81 andv, = 21. Results
from the numerical experiments using the absolute, rela@ivand relativel , criteria
are given in Tables IX, X, and Xl, respectively. The results show that the accelerati
achieved by the adaptive smoothing is less, compared to the airfoil case, but still impro
the performance of the MG algorithm by a factor of 2 to 2.54, depending on the A!
MG variant used. For this flow case, the performance results using different adapti
criteria show small differences. Concerning the variahleonclusions similar to the airfoil
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FIG. 13. Schematic of the 90curved channel.

case can also be drawn here. The use of varighlrcelerates the solution by about
the same factor with the constaptand, like the airfoil cases, also leads to more stabl
solutions.

The most interesting conclusion for this particular flow is that the adaptive smoothi
is more efficient when it is implemented only in the finest grid {A@riant) and this
applies for all adaptivity criteria considered here. This numerical behavior is exactly 1
opposite from the results obtained for the airfoil flow. A possible explanation for th
is as follows: Although both flows are incompressible, the flow around the airfoil h:

FIG. 14. Formation of the secondary flow @t= 90°.
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TABLE IX
Results for the Curved Channel Case Using the Absolute Criterion

Method Yimin Vimax Omax ns MG sweeps Work units Acceleration
MG 31 766 1.00
AS-MG 1 1 5 88 671 1.14
AS-MG 0 1 1.1 5 31 361 2.12
AS,-MG 1 1 5 39 359 2.13
AS,—MG 1 1 5 36 381 2.01
AS-MG 0 1 1.1 10 32 324 2.36
AS,—-MG 1 1 10 69 436 1.76
AS,—MG 0 1 1.1 10 32 316 2.42
AS,—MG 1 1 10 34 306 2.50
AS,—~MG 0 1 1. 10 30 349 2.19
AS,—MG 0 1 1.1 10 30 323 2.37

Note. The table includes results from the implementation of three variants of the approach: in all three gr
(AS), in the intermediate and finest grids (ASand in the finest grid only (AS. See footnote of Table Il for
additional information.

large regions in which the solution does not significantly change during the computatio
However, the elliptic character of the flow is more dominant in the curved channel ce
and, therefore, changes of the solution in subsets of the domain are much more likel
influence the solution in the neighboring regions. This behavior is more severe on coa
grids and, thus, the AS approach performs better when it is implemented only in the fir
grid.

TABLE X
Results for the Curved Channel Case Using Relativ€ Criterion

Method Yimin Vimax Omax Ng MG sweeps Work units Acceleration
MG 31 766 1.00
AS-MG 0.1 0.1 5 48 464 1.65
AS-MG 0 0.1 1.1 5 39 433 1.77
AS,—MG 0.1 0.1 5 41 428 1.79
AS,-MG 0.1 0.1 5 32 355 2.16
AS,-MG 0 0.1 11 5 30 374 2.05
AS,-MG 0.2 0.2 5 84 684 1.12
AS,-MG 0 0.2 1.1 5 30 359 2.13
AS,-MG 0.1 0.1 10 41 361 2.12
AS,—~MG 0 0.1 1 10 31 389 1.97
AS,-MG 0 0.1 1.1 10 32 358 2.14
AS,-MG 0 0.2 11 10 32 359 2.13
AS,-MG 0.05 0.05 20 38 397 1.93
AS,-MG 0.1 0.1 20 40 301 2.54
AS,-MG 0 0.1 1 20 30 359 2.13
AS,-MG 0 0.1 1.1 20 31 346 2.21

Note.The table includes results from the implementation of three variants of the approach: in all three gr
(AS), in the intermediate and finest grids (ASand in the finest grid only (AS. See footnote of Table Il for
additional information.
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TABLE Xl
Results for the Curved Channel Case Using the Relative, Criterion

Method Yimin Vimax Omax Ns MG sweeps Work units Acceleration
MG 31 766 1.00
AS-MG 1 1 5 52 633 1.21
AS-MG 0 1 1.1 5 43 516 1.48
AS,—-MG 1 1 5 40 467 1.64
AS,—MG 1 1 5 30 362 2.12
AS-MG 0 1 1.1 10 44 505 1.52
AS,-MG 0 1 1.1 10 41 467 1.64
AS,—MG 1 1 10 33 336 2.28
AS,—MG 0 1 1.1 10 30 353 2.17
AS,-MG 1 1 20 35 318 2.41
AS,—MG 0 1 1.1 20 29 335 2.29

Note.The table includes results from the implementation of three variants of the approach: in all three g
(AS), in the intermediate and finest grids (ASand in the finest grid only (A3. See footnote of Table Il for
additional information.

6. CONCLUSIONS

Implementation and investigation of an adaptive-smoothing approach in conjunction w
the FMG-FAS method was presented.

Three different adaptivity criteria were investigated both for attached and separated fl
around a NACA 0012 airfoil, as well as for three-dimensional flow in a curved chann
Several numerical experiments were performed showing that additional acceleration of
computations can be achieved by AS—-MG. In addition to the use of constant adaptivity
rameters, a dynamic procedure (dynamic- adaptivity) for defining variably these parame
was also proposed. The main difference between the AS—MG variants based on static
dynamic adaptivity is that the former makes use of information about the current residu
whereas the latter exploits information about the convergence history of the iterative proc
and, therefore, leads to more stable numerical solutions.

Furthermore, the numerical experiments showed that for external airfoil flow the AS—I
performs better if it is applied in all grid levels of the MG algorithm. In contrast, for interne
flow it was found that the AS—MG works more efficiently if it is applied only in the fines
grid. It was also found that AS—MG provides greater acceleration for the airfoil flow cas
than for channel flow. The absolute criterion was found to lead to a gradual reduction of
CVs as the computation progresses, resulting in fast reduction of the active set towarc
end of the computation. In contrast, for the relatB/eriterion the number of CVs fluctuates
during the iterations. However, irrespective of the particular numerical behavior result
from different adaptivity criteria, it was found that the overall acceleration is achieve
through a proper balance of the size of the active set (i.e., the number of CVs involver
the computation) and total number of MG sweeps required for convergence.

The present work investigated the idea of adaptive smoothing for the solution of the
compressible Navier—Stokes equations in conjunction with the FMG—FAS and the artific
compressibility method. However, the same idea can also be exploited for compress
flows as well as for other physical systems (e.g., in electromagnetism). The implementa
of adaptive-smoothing can also offer significant advantages in problems which require Ie
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computing resources (e.g., direct numerical simulation of turbulence) and research tov
this direction needs to be performed. Furthermore, the potential to accelerate even fut

flui

dflow computations can possibly be achieved if other approaches for determining

dynamic-adaptivity parameters are developed. The latter as well as the extension of

AS

—MG to unsteady incompressible and compressible flows is part of our future reseec

agenda.
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